
The Test and Evaluation Uses of Heterogeneous
Computing: GPGPUs and Other Approaches

Dan M. Davis, Gene Wagenbreth, and Robert F. Lucas

Information Sciences Institute, USC, Marina del Rey, California

Paul C. Gregory

Lockheed Martin Company, Suffolk, Virginia

The test and evaluation community faces conflicting pressures: Provide more computing power

and reduce electrical power requirements, both on the range and in the laboratory. The authors

present some quantifiable benefits from the implementation of General Purpose Graphics

Processing Units (GPGPUs) as heterogeneous processors. This produces power, space, cooling,

and maintenance benefits that they have documented. Other efforts in the field of power

reduction techniques will be outlined, e.g., the efficient low-power microprocessor approach of

Prof. William Dally and IBM’s well-publicized Blue Gene project. The utility of all of these

techniques for the test and evaluation community is assessed. The authors will report on several

aspects of their experience with GPGPUs: programmability, performance of codes implemented

in several areas of computational science, and the compute power per unit of electrical

consumption. An overview of code design and implementation approaches is discussed.

Key words: Code development; computing cost; computing power per watt; efficient

low-power microprocessor (EM); energy conservation; IBM’s Blue Gene; military

experimentation; modeling; simulation fidelity; training; William Dally.

I
t is commonly held that test and evaluation
(T&E) is one of the most critical steps in the
development of virtually all defense systems
(Fox et al. 2003). It is the central means of
making sure that new systems will reliably

perform their intended functions in their intended
environment, often combat. T&E of current systems is
an elaborate and time-consuming process that reflects
both the intricacies of the object of the test and the
range of equipment, personnel, and environments
required. Many argue that this process consumes far
too much of the time that it takes to put new systems
into the hands of the warfighters and uses way too
many resources without much obvious benefit for those
in combat.

One solution to ameliorating these costs and delays
is the increased use of computer simulations, ranging
from argent-based-models of battlespaces to Mechan-
ical Computer Aided Engineering (MCAE) analyses
of hardware to esoteric simulations using computa-
tional fluid dynamics to assess everything from new
airframes to dispersion of chemical and biological
agents.

Computing costs are significant as well. These costs
are not only the computer purchase price, be it a small
workstation or time on High Performance Computers
(HPC). They must include the costs of training,
programming, maintaining, validating, and supporting
extensive code bases (Kepner 2004). These questions
are even more urgent because increasing emphasis in
T&E concerns the expenditures of money and time in
the development process. Efficiency is critical when
cost overruns and schedule delays are deleterious and
costly (Fox et al. 2004).

One potential approach to reducing costs, time-to-
roll-out, and physical danger, all the while improving
validity, transparency, and utility, is to adopt the
strategy of heterogeneous computing. Heterogeneous
computing is the use of a variety of different types of
computational units to aid the central processing unit
(CPU), such as accelerators like General Purpose
Graphics Processing Units (GPGPUs), field program-
mable gate arrays, and digital signals processors. There
is a growing body of evidence on the use of these
devices, some of it created by the authors in their work
on large-scale battlespace simulations at the U.S. Joint

ITEA Journal 2011; 32: 77–85

Copyright ’ 2011 by the International Test and Evaluation Association

32(1) N March 2011 77

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
The Test and Evaluation Uses of Heterogeneous Computing: GPGPUs
and Other Approaches

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Information Sciences Institute,University of Southern California,4676
Admiralty Way, Suite 1001,Marina del Rey,CA,90292

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

9

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Forces Command (JFCOM) and its Joint Concept
Development and Experimentation Directorate (J9).

Joint SemiAutomated Forces (JSAF)
One program in use at JFCOM is JSAF code. JSAF

is loaded onto a network of processors in either
workstations or Linux clusters. They communicate via
a local or wide area network. Communication is
implemented with high level architecture and a custom
version of runtime infrastructure software, called RTI-
s. A run is implemented as a federation of simulators or
clients, and multiple clients, in addition to JSAF, are
typically included in a simulation.

As is common in the T&E community, operational
imperatives drive experimental designs that require
even further expansion of simulation code capabilities.
These needs include some of the following:

N more background entities,
N more complex behaviors,
N larger geographic area,
N multiple resolution terrain, and
N more complex environments.

The energy efficiency issues addressed here are not
new ones. The lack of energy resources and the
inability to adequately conserve existing power reserves
can arguably be advanced as one of the reasons for the
loss of World War II by both major Axis powers.

In T&E settings, the need for power conservation is
still paramount, mainly for cost, maintenance, and
habitability reasons. These may vary by region, e.g.,
power is on the order of three times as expensive on
Maui as it is in Maryland, and by installation, e.g., size
and temperature constraints differ between a high
performance computing center and a test aircraft
cockpit. Nevertheless, all of the previously mentioned
parameters are important, critical, or vital, as the case
may be.

While most equipment suffers from high heat,
electronics are especially sensitive. The microcircuitry
now employed in every phase of computing is prone to
energy constraints, the principal culprit being the need
to transfer heat away from the sensitive circuits that are
generating their own heat. While calling attention to
this concern, it is not the intent of this article to focus
on heat dissipation mitigation techniques.

This article investigates innovative and effective
ways to accomplish the same amount of computation
while using significantly less total energy. The
technique studied by the authors is to use GPGPUs
to effectively handle computationally intensive activity
‘‘spikes.’’ The authors report on three specific aspects of
their use of GPGPUs:

N code drafting and development hurdles and
opportunities,

N codes modified in several areas of computational
science,

N a wide range of software results in floating point
operations per second (FLOPS) per watt param-
eters in various hardware configurations.

An introductory synopsis of algorithmic design and
implementation strategies should allow the T&E users
to conceptualize the applicability of this technique to
their own situations. To assist in this analysis, we
discuss and display an actual working code segment
along with the design rationale behind it. Further,
because such new techniques cannot be implemented
willy-nilly, the authors feel that their experience in
training other Department of Defense (DoD) users to
implement the approach will assist program managers
in scoping and justifying training requirements.

GPGPUs as computer accelerators
Methodology employed in simulation

To better analyze potential T&E use, we set forth
the method implemented by this team for forces
modeling and simulation. We use existing DOD
simulation codes running on advanced Linux clusters
operated by JFCOM. The previous J9 clusters were on
Maui and at Wright Patterson Air Force Base in Ohio,
but the new cluster enhanced with 64-bit CPUs and
NVIDIA 8800 GPUs was in Suffolk at JFCOM
(Lucas et al. 2007). In addition to the benefits derived
in force-on-force modeling, the T&E community at
large could benefit from the acceleration applied in
other arenas, such as

N physics-based phenomenology,
N CFD plume dispersion,
N computational atmospheric chemistry,
N data analysis.

GPGPU experiments were first conducted on a
more manageable code set to ease the programming
burden and hasten the results. Basic Linear Algebra
Subprograms routines (Dongarra 1993) were seen as
appropriate candidates. An MCAE ‘‘crash code’’
arithmetic kernel was used as vehicle for a basic
demonstration problem, based on earlier work (Diniz
et al. 2004).

This preliminary characterization of GPU accelera-
tion focused on a subset of the large space of numerical
algorithms, in this case factoring large sparse symmet-
ric indefinite matrices. Such problems often arise in
MCAE applications. The Intelligent Automation, Inc.
(ISI) team made use of the single precision general
matrix multiply algorithm.

Davis, Wagenbreth, Lucas, & Gregory

78 ITEA Journal

The GPU should also be a very attractive T&E
computation accelerator to overcome hurdles, e.g.,
sparse matrix factorization. Previous generations of
accelerators, such as those designed by Floating Point
Systems (Charlesworth and Gustafson 1986), were for
the relatively small market of scientific and engineering
applications. Contrast this with GPUs that are
designed to improve the end-user experience in mass-
market arenas such as gaming.

To get meaningful speed-up in T&E settings, we
need to reduce the GPU data transfer and interaction
between the host and the GPU to an acceptable
minimum. The T&E user should be warned that the
conduct of this analysis is not trivial, and the costs of it
must always be born in mind when considering the use
of GPGPUs (Kepner 2004).

Implementation research results
Results for recent runs on the C1060 from NVIDIA

are shown in Figure 1, which plots the time is takes to
factor the matrix as a function of the number of cores
employed, both with and without the GPU. ISI used a
dual-socket Nehalem host, sustaining 10.3 GFLOPS
when using one core, and 59.7 GFLOPS when using
all eight. When the GPU is employed, it performs
6.57E + 12 operations, 92 percent of the total, and
sustains 98.1 GFLOPS in doing so. The code’s overall
performance with the GPU improves to 61.2
GFLOPS when one host core is used, and 79.8
GFLOPS with all eight. For perspective, reordering
and symbolic factorization take 7.9 seconds, permuting
the input matrix takes 2.64 seconds, and the triangular
solvers take 1.51 seconds (Lucas, Wagenbreth, and
Davis 2010).

The single precision general matrix multiply func-
tion used in this work was supplied by NVIDIA. In
testing, it was found that it could achieve close to 100
GFLOP/s, over 50 percent of the peak performance of
the NVIDIA GTS GPU. Thus, the efforts were
focused on optimizing the functions for eliminating
off-diagonal panels (GPUl) and factoring diagonal
blocks (GPUd).

Another application that may have T&E uses is a
fast and large-scale graph-based construct, e.g., route-
planning algorithms found in complex urban environ-
ment simulations. JSAF currently employs a heuristic
A* search algorithm to do route planning for its
millions of entities—the algorithm is sequential and
thus very computationally expensive. Using the GPU,
the JSAF simulation can off-load the route-planning
component to the GPU and remove one of its major
bottlenecks (Tran et al. 2008).

Early experimentation results at JFCOM
T&E users may benefit from an awareness of the

initial year of research on JFCOM’s GPU-enhanced
cluster, Joshua. It was marked with typical issues of
stability, operating system modifications, optimization,
and experience. All of the major stated goals of the
cluster proposal were met or exceeded. Joshua easily
met its stability and availability requirements from
JFCOM.

Any potential user would be interested in the issues
of getting the machine up and running. A typical
problem was getting the correct operating system
installed and coordinating that with the NVIDIA
staff’s recommendations as to varying versions and
incompatibilities. Those types of issues are still relevant
today.

Joshua provided 24 3 7 3 365 enhanced, distrib-
uted, and scalable computational resources that did
enable joint warfighters at JFCOM and international
partners to develop, explore, test, and validate twenty-
first century battlespace concepts. The specific goal was
to enhance global-scale, computer-generated military
experimentation by sustaining more than 2,000,000
entities on appropriate terrain with valid phenomenol-
ogy.

This was more than achieved in a major break-
through in which 10 million entities were simulated in
a Middle Eastern urban environment complete with
demographically correct civilians (Figure 2).

The tasks of overcoming implementation hurdles
and stabilizing the compute environment were inter-
esting but not daunting. Agent-based model combat
simulations of this size and sophistication were
previously impossible because of limitations of com-
putational power. The earlier pair of clusters had

Figure 1. Multicore factorization time, with and without

the GPU.

Heterogeneous Computing in T&E

32(1) N March 2011 79

enabled the development and implementation of a
proven scalable code base capable of using thousands of
nodes interactively. The ISI team continues to address
issues of interest to the T&E community such as
enhanced security for distributed autonomous process-
es, interactive HPC paradigms, use of advanced
architectures, self-aware models, global terrain with
high-resolution insets, and physics-based phenome-
nology, many of which have their counterparts in
T&E.

There is a general consensus that there are two
possible ways to improve simulation fidelity: (a) by
increasing entity counts (quantitatively) and (b) by
increasing realism (qualitatively) of entity behaviors
and resolution of the environment. Numerous efforts
have been made to increase the former, e.g., SF
Express (Brunnet et al. 1998) and Noble Resolve. They
included the use of the scalable parallel processors or
clusters of compute nodes (Wagenbreth et al. 2005).
As for the latter, JFCOM M&S teams have made
great strides in improving entity behavior models
(Ceranowicz et al. 2002; Ceranowicz, Torpey, and
Hines 2006) by adding intelligence to the simulation
entity behaviors, and with these improvements, entities
behave in more realistic fashions. Because JFCOM has
been required to simulate more urban operations, the
density of the road and trail networks has dramatically
increased. This dictates an increase in computational
costs (in terms of how entities relate to the environ-
ment), which was the heart of that research effort.

Power consumption analyses
Finding a great deal of interest in GPGPU

acceleration, the following work, while necessarily
preliminary because of the design dynamics of the
devices being offered, may prove useful to those facing
power issues today. In any case, these analyses do
support the proposition that the use of GPGPUs is
probably indicated as a viable method for reducing
power consumption per unit of computation (usually

quantified here as FLOPS). Let us examine the extra
power requirement for a system, first at the maximum
power drain specified, then the drain at high
computational loads, the drain at idle, and finally
the drain with the GPGPU card removed from the
node.

ISI had access to three versions of the NVIDIA
GPUs that were tested, the 8800, 9400, and 9800. The
NVIDIA C1060s and C2050s were not available for
this early test. Data on them will be presented when it
is available. In each case, the host for the GPGPU was
chosen to best complement the GPU itself, so different
platforms were used in every instance. While this may
seem to be comparing apples and oranges, this is a
necessary result of the choice of the target GPUs and
would be more convoluted if they were all tried on one
platform with the concomitant compromises.

A Model 22-602 Radio Shack AC ammeter probe,
as seen in Figure 3, was used to test current flow to the
entire node.

Wattage parameters from the vendor are typically
maximum current allowed, not typical current usage
under various conditions. That is why the authors
measured each value themselves. All values in this
article were either measured or calculated.

In each case, the amperage was measured, within the
accuracy of the meter, of the current to the node under
test while exercising the GPU (a) to the maximum
extent feasible, (b) at idle while running, (c) at a sleep
or hibernate mode, and (d) then finally, with the
subject card removed. Cost, time, and instrumentation
constraints precluded measuring the entire power
consumption of the cluster Joshua, so figures for that
power consumption were derived from findings and
from data available from the vendors.

Figure 2. Screen capture of 10 million entity run.

Figure 3. Ammeter and harness used for current quantification.

Davis, Wagenbreth, Lucas, & Gregory

80 ITEA Journal

The authors wish to issue a caveat about the
amperages cited. They can reliably be used for
comparative purposes, but care should be exercised if
trying to calculate actual amperages to be experienced
in different computational environments and using
different analytic tools. The accuracy of the meter used
could be reliably certain to return comparative figures,
but the absolute numbers might be off by some
significant fraction. Test and retest numbers were very
stable, giving some assurance that the comparative
values were meaningful. The question that was being
posed was: ‘‘How much power does the GPGPU card
consume in each of several different states and with
different host environments?’’ (Table 1). The details of
the hosts are omitted here for space considerations but
are available from the authors upon request.

These data indicate that the entire node takes on the
order of 50 percent more power at full load and that
the GPGPU adds on the order of 15–20 percent power
consumption, even at rest, assuming one GPGPU card
per processor. For T&E purposes, the authors would
recommend something more on the order of one
GPGPU per four to eight cores of a CPU.

GPGPU Programming in CUDA
Again, looking at the overall productivity issue,

programming ease may easily outweigh power con-
sumption and new hardware costs (Kepner 2004).
While we do not want to analyze CUDA program-
ming too stringently, the authors think it advisable to
show the potential user some indication of what
CUDA programming entails.

First, here is some FORTRAN code:

do j = jl, jr

do i = jr + 1, ld

x = 0.0

do k = jl, j 2 1

x = x + s(i, k) * s(k, j)

end do

s(i, j) = s(i, j) 2 x

end do

end do

Now, here is the same algorithm, implemented into
CUDA:

ip=0;

for (j = jl; j ,= jr; j++) {

if(ltid ,= (j21)2jl){

gpulskj(ip+ltid) = s[IDXS(jl+ltid,
j)];

}

ip = ip + (j 2 1) 2 jl + 1;

}

__syncthreads();

for (i = jr + 1 + tid; i ,= ld;

i += GPUL_THREAD_COUNT) {

for (j = jl; j ,= jr; j++) {

gpuls(j2jl,ltid) = s[IDXS(i,j)];

}

ip=0;

for (j = jl; j ,= jr; j++) {

x = 0.0f;

for (k = jl; k ,= (j21); k++) {

x = x + gpuls(k2jl,ltid) *
gpulskj(ip);

ip = ip + 1;

}

gpuls(j2jl,ltid) 2= x;

}

for (j = jl; j ,= jr; j++) {

s[IDXS(i,j)] = gpuls(j2jl,ltid);

}

}

A critical factor, if not the most critical one, in
heterogeneous programming is the need to understand
which algorithms map well enough to the GPGPU to
warrant the overhead costs of porting and maintaining
them. For a more disciplined treatment of the
programming environment and approach that will be
useful, the reader is referred to the authors’ Web sites
on GPGPU processing (Davis 2009). NVIDIA also
offers course materials online, and the authors willingly
acknowledge the assistance that NVIDIA has given to
them. Like all tasks, there seems to be a critical
experience level required for reliable programming in
this mode.

Table 1. Power readings using different GPGPUs.

Status R

Whole node watts (±4%)

Max Idle Sleep Removed

8800 264 228 228 156

9400 444 360 324 275

9800 730 586 540 460

Heterogeneous Computing in T&E

32(1) N March 2011 81

Other approaches to better computation/
watt ratios
ELM moves data more efficiently

Many in the T&E community may be familiar with
computing pioneer Bill Dally. He has been advancing a
different approach to saving power during computa-
tion. Analyzing the power used on microcircuits, his
team observed that most of the power was being used
moving data around the chip. Because many of these
movements were the nonoptimal artifacts of earlier
VLSI designs, he and his Stanford team set out to
make the data flows more power efficient (Dally et al.
2008).

Professor Dally’s (ELM) project has sought high
performance in the creation of a low-power and
programmable embedded system. He has sought to
reduce the very inefficient memory transfers by
designing a chip composed of many efficient tiles and
providing a full software stack. It is his intention that
ELM will be able to reduce or eliminate the need of
fixed function logic blocks in passively cooled systems.

The ELM team maintains that energy consumption
in modern processors is dominated by supplying
instructions and data to functional units. If intercon-
nects benefit less than logic from advances in
semiconductor technologies, driving the interconnects
has accounted for an increasing fraction of the energy
consumed. This may account for more than 70 percent
of the energy consumed by the computing unit.

Providing a platform that can execute real-time
computationally intensive tasks and still reduce the
power used is the goal of the ELM architecture. This is
being done in reaction to the fact that embedded
systems, e.g., cell phones, are composed of micropro-
cessors and fixed-function circuitry. Programmability
for the system is provided by the microprocessor, but it
is too inefficient to meet the computation, timing, and
power constraints of many communication and mul-
timedia protocols. This, in turn, requires fixed function
logic to be added to embedded systems to provide the
necessary performance. Unfortunately, this cannot be
changed once the system has been fabricated.

ELM implementations are designed so that software
replaces the fixed function hardware. This removes the
inefficiencies associated with this programmability
conundrum. Clearly, this is a good thing because
software applications are more cost-effective to create
and update than silicon and the concomitant power
savings are still realized.

Ensembles, which are simple tiles, are made up of
software managed memory (EM) and several Ensemble
Processors (EPs). Prof. Dally maintains that these small
tiles are much more energy efficient than large cores and
offer more computation contexts for each die area. The

team is developing the tiled architecture using software
to take advantage of the available computation resourc-
es. The rationale here is that a larger software up-front
cost will be amortized over a program’s lifetime.

Each EP can issue both an arithmetic and memory
operation using a two-wide instruction. Load latencies
are managed easily. Prefetching into the instruction
registers prior to execution eliminates stalling on jumps.
Some old parallelization techniques are used, e.g., the
ELM architecture supports single-instruction multiple
data execution within an ensemble. All EPs execute in
lock step with instructions coming from a single in-
struction register file. This has effectively quadrupled the
amount of instructions that can be stored.

These is a 64-entry, software-managed instruction
register file that is available to the EPs. The register
files are adequate to hold the inner loops of programs
with little performance degradation. Reduced energy
requirements are realized by having only one instruc-
tion fetch per cycle per EP.

The Stanford team reports that there can be power
reductions of two orders of magnitude for individual
operations on the silicon. In Table 2, Dally’s team
presents their data on power reductions (Balfour et al.
2008).

This approach shows much promise but may not be
immediately applicable to the T&E community and
may be encumbered by the, as yet demonstrable,
capability of journeymen programmers to master the
analytical techniques required for optimization. Fur-
ther, the authors were not able to find any data that
supported an analysis of overall power savings. In an
analogous way, there is a temptation for GPGPU
advocates to claim huge processing speedups for some
restricted subroutine, but they are less inclined to say
what the impact was on the total functioning code base
that is actually needed by the user.

IBM’s Blue Gene
IBM is also contributing to power reduction

technologies in the form of the ‘‘big-iron’’ Blue Gene
series of high performance computers. For its Blue Gene
initiative, IBM integrated all of the putatively essential
subsystems on a single chip, with each of the
computational or communications nodes dissipating
low power (about 17 W, including DRAMs). Low
power dissipation enables the installation of as many as
1,024 compute nodes and the necessary communications
nodes in the standard computer rack. This can be done
in accordance with standard limits on electrical power
supply and air cooling. As discussed earlier, the
important performance metrics in terms of power
(FLOPS per watt), space (FLOPS per square meter of
floor space), and cost (FLOPS per dollar) have allowed

Davis, Wagenbreth, Lucas, & Gregory

82 ITEA Journal

IBM to scale up to very high performance (Chiu, Gupta,
and Royyuru 2005). The issue may be, ‘‘Was this done at
the expense of general purpose accessibility?’’

This is not a classical ‘‘general purpose’’ computer
because it requires significant esoteric skills to make
optimal use of its power. The compute nodes are
attached to three parallel communications networks:
peer-to-peer communications use a three-dimensional
toroidal network, collective communications use a
collective network, fast barriers use a global interrupt
network, and external communications are provided by
an Ethernet network. File system operations are
handled by the I/O nodes on behalf of the compute
nodes. Finally, there is a management net to provide
access to the nodes for configuration, booting, and
diagnostics.

The compute nodes in Blue Gene/L support a single
user program using a minimal operating system. A
limited number of POSIX calls are supported, and only
one process may be run at a time. Green threads must be
implemented to simulate local concurrency. C, C++, or
FORTRAN are the supported languages and as is
common with clusters, MPI is used for communication.

The Blue Gene/L system can be partitioned into
electronically isolated sets of nodes to allow multiple
programs to run concurrently. The major drawbacks
seem to be that the hardware is not based on a
commercially supported product, as are the cell
processor implementations and the GPGPU accelera-
tions, and on the potentially problematic programming
environment.

Analysis
Out of scientific restraint, the authors have assidu-

ously resisted the temptation to claim huge increases in

computational power or efficiencies in power con-
sumption per unit computation. They note that while
the NVIDIA processors in the 8800 through the
C2050 series may have potential compute power that is
nominally in the several hundred gigaFLOPS range,
the issue of real interest is, ‘‘What will they do to
accelerate the programs the T&E user needs?’’ In the
authors’ case, early experiences on the simulations run
by JFCOM speak to the evaluation segment of T&E
because that is a major thrust at JFCOM.

The GPGPUs can attack some issues, most notably
the spikes of activity occasioned by a data surge by the
sensor being simulated or a new direction of travel for a
large group. These spikes are tailormade for resolution
by GPU processing, bearing close resemblance to the
visualization algorithms for which the GPU was
designed. By easily handling the visualization (Lucas
et al. 2007) and route-finding spikes (Tran et al. 2008),
the GPGPUs do actually provide an effective overall
doubling of effective computing for the cost of an
approximately 30 percent increase in power. Clearly
this is desirable at this level, and considering the
newness of the approach, more impressive gains might
be anticipated for later.

In the case of Joshua, one GPGPU for every eight
cores was considered prudent, and experience has
shown that the GPGPUs have not been insufficient to
meet the needs imposed upon them. In this case, the
power increase is more on the order of 5 percent, with
the anticipated doubling of computational power.
Should this ratio turn out to be valid in other, more
constrained implementations, as described earlier, the
benefits will be significant. Increased habitability,
reduced heat signatures, increased battery life, reduced
environmental stress on electronic components, and

Table 2. Power savings using ELM.

Ensemble Processor

Technology TSMC CL013G (VDD 5 1.2 V)

Clock freq. 200 MHz

Avg. power 28 mW

Multipliers 16-bit + 40-bit acc. 16.5 pJ/op

irfs 64 128-bit registers 16 pJ/read 18 pJ/write

xrfs 32 32-bit registers 14 pJ/read 8.7 pJ/write

orfs 8 32-bit registers 1.3 pJ/read 1.8 pJ/write

arfs 8 16-bit registers 1.1 pJ/read 1.6 pJ/write

Memory 8 KB 33 pJ/read 29 pJ/write

RISC Processor

Technology TSMC CL013G (VDD 5 1.2 V)

Clock freq. 200 MHz

Avg. power 72 mW

Multiplier 16-bit + 40 bit acc. 16.5 pJ/op

Register file 40 32-bit registers 17 pJ/read 22 pJ/write

Instr. cache 8KB (two-way) 107 pJ/rd 121 pJ/write

Data cache 8KB (two-way) 131 pJ/rd 121 pJ/write

Heterogeneous Computing in T&E

32(1) N March 2011 83

other benefits would accrue with almost trivial energy
costs.

Critically, the computing power that the T&E
professionals need would be made available to them
where they need it, on the range or in the field. This is
not to say that the authors find that other approaches
to heterogeneous high performance computing may
not also hold promise. As with all new technologies,
the costs in terms of availability, adoptability, and
training must be kept in mind.

In more mundane settings, say a domestic comput-
ing center, the cost savings in power alone are
significant. Because the numbers on power usage for
large clusters such as Joshua are merely daunting in
Virginia, in more remote areas such as the Maui High
Performance Computing Center where they face
electric rates that are literally multiples of what is
common on the mainland, it is reasonable to look at
the doubling of computational power as vital. It means
that one’s FLOPS per watt improvements may
generate savings on the order of from $2,500 per hour
to $5,000 per hour, at $0.09 and $0.20 per kilowatt
hour, respectively, for the two centers.

Conclusions
T&E will face increasing demands for ever-growing

computer systems. Many new technologies offer
various paths to increasing computational power, while
restraining the numerous and varied costs of power
consumption. The authors maintain that even their
conservative approach and carefully substantiated
claims support the tenet that heterogeneous computing
displays many attractive features of interest to the
T&E community. C

DAN M. DAVIS is the director, JESPP Project, Infor-

mation Sciences Institute (ISI), University of Southern

California (USC), focusing on large-scale distributed DoD

simulations. As the assistant director of the Center for

Advanced Computing Research at Caltech, he managed

Synthetic Forces Express, bringing HPC to DoD

simulations. Prior experience includes work as a software

engineer at the Jet Propulsion Laboratory and at a classified

project at Martin Marietta. He saw duty in Vietnam as a

cryptologist in the USMC, and he retired as a commander,

cryptologic specialty, USNR. He received a bachelor of arts

and a juris doctor degree in law from the University of

Colorado in Boulder. E-mail: ddavis@isi.edu

DR. ROBERT F. LUCAS is the director of the Compu-

tational Sciences Division of ISI at the USC. There he

manages research in computer architecture, VLSI, compil-

ers, and other software tools. He’s been the PI on the

JESPP project since 2002. Prior to joining ISI, he was the
head of the High Performance Computing Research
Department for NERSC at LBNL. Earlier he was the
deputy director of DARPA’s ITO and a member of the
research staff of IDA’s Center for Computing Sciences. Dr.
Lucas received bachelor of science, master of science, and
doctor of philosophy degrees in electrical engineering from
Stanford University, Palo Alto, California. E-mail:
rflucas@isi.edu

GENE WAGENBRETH is a systems analyst for parallel
processing at the Information Sciences Institute at the
University of Southern California, doing research in the
Computational Sciences Division. Prior positions have
included vice president and chief architect of Applied
Parallel Research and Lead Programmer of Pacific Sierra
Research, where he specialized in parallelization of
FORTRAN programs. He is active in benchmarking,
optimization, and porting of software, and has pro-
grammed on CRAY, SGI, Hitachi, Fujitsu, NEC,
networked PCs, networked workstations, IBM SP2, as
well as conventional machines. He received a bachelor of
science degree in math/computer science from the Univer-
sity of Illinois, Champagne-Urbana. E-mail: genew@
isi.edu

PAUL C. GREGORY, JR., is the Lockheed Martin senior
program manager for modeling and simulation support
task orders at the Joint Experimentation Directorate (J9)
of the U.S. Joint Forces Command in Suffolk, Virginia.
Mr. Gregory has supported J9 since August 1998 as an
experiment planner, designer, control cell member, and as
the contractor lead for the Joint Concept Development
Pathway. Earlier, he retired from the Air Force as an
electronic warfare officer in the F-4G Wild Weasel
aircraft. He received a bachelor of science from the
University of Tennessee, Knoxville, and a master of
science degree at Embry-Riddle Aeronautical University,
Long Beach, California. E-mail: paul.c.gregory@lmco.com

References
Balfour, J., William J. Dally, D. Black-Schaffer, V.

Parikh, and J. S. Park. 2008. An energy-efficient
processor architecture for embedded systems. IEEE
Computer Architecture Letters 7 (1), 29–32.

Brunett, S., D. Davis, T. Gottschalk, P. Messina,
and C. Kesselman. 1998. Implementing distributed
synthetic forces simulations in metacomputing envi-
ronments. In Proceedings of the Seventh Heterogeneous
Computing Workshop. Orlando, Florida.

Ceranowicz, A., M. Torpey, W. Hellfinstine, J.
Evans, and J. Hines. 2002. Reflections on building the
joint experimental federation. In Proceedings of the
Interservice/Industry Training, Simulation and Educa-
tion Conference. Orlando, Florida.

Davis, Wagenbreth, Lucas, & Gregory

84 ITEA Journal

Ceranowicz, Andy, M. Torpey, and J. Hines. 2006.
Sides, force, and ROE for asymmetric environments.
In Interservice/Industry Training, Simulation, and
Education Conference Proceedings. Orlando, Florida.

Charlesworth, A., and J. Gustafson. 1986. Introducing
replicated VLSI to supercomputing: the FPS-164/MAX
scientific computer. IEEE Computer 19 (3), 10–23.

Chiu, G. L.-T., M. Gupta, and A. K. Royyuru
(Guest Editors). 2005. Blue Gene. Preface. IBM
Journal of Research and Development 49 (2), 191–193.

Dally, W. J., J. James Balfour, D. Black-Shaffer, J.
Chen, R. C. Harting, V. Parikh, J. S. Park, and D.
Sheffield. 2008. Efficient embedded computing. IEEE
Computer 41 (7), 23–32.

Davis, D. M. 2009. General purpose computing using
GPUs on a Linux cluster: An introduction and program-
ming practicum. http://www.isi.edu/,ddavis/GPU/
Course3/ (accessed July 6, 2009).

Diniz, P., Y.-J. Lee, M. Hall, and R. Lucas. 2004. A
case study using empirical optimization for a large,
engineering application. In Proceedings of the 18th
International Parallel and Distributed Processing Sympo-
sium, April 2004, Santa Fe, New Mexico, 200–208.

Dongarra, J. 1993. Linear algebra libraries for high-
performance computers: a personal perspective. Parallel
& Distributed Technology: Systems & Applications, IEEE
1 (1), 17–24.

Fox, B., M. Boital, J. C. Graser, and O. Younossi.
2004. Test and Evaluation Trends and Costs for Aircraft
and Guided Weapons. Santa Monica, California: Rand
Corporation.

Kepner, J. 2004. HPC productivity: An overarching
view. International Journal of High Performance Com-
puting Applications 18 (4), 393–397.

Lucas, R. F., G. Wagenbreth, and D. M. Davis.
2010. Multifrontal computations on GPUs and their

multicore hosts. In Proceedings of the VecPar Conference.
Berkeley, California.

Lucas, R. F., G. Wagenbreth, J. J. Tran, and D. M.
Davis. 2007. Implementing a GPU-enhanced cluster
for large-scale simulations. In Interservice/Industry
Training, Simulation, and Education Conference Pro-
ceedings. Orlando, Florida.

Tran, J. J., R. R. Lucas, K.-T. Yao, D. M. Davis, G.
Wagenbreth, K.-T. Yao, and D. J. Bakeman. 2008. A
high performance route-planning technique for dense
urban simulations. In Interservice/Industry Training,
Simulation, and Education Conference Proceedings.
Orlando, Florida.

Wagenbreth, G., K.-T. Yao, D. Davis, R. Lucas,
and T. Gottschalk. 2005. Enabling 1,000,000–Entity
Simulations on Distributed Linux Clusters, paper
presented at WSC05-The Winter Simulation Confer-
ence, Orlando, FL.

Acknowledgments
Thanks are due to the excellent staffs at JFCOM,

ASC-MSRC, and MHPCC and our colleagues at
NVIDIA. Some of this material is based on research
sponsored by the Air Force Research Laboratory under
agreement number FA8750-05-2-0204. Other work is
based on research sponsored by the U.S. Joint Forces
Command via a contract with the Lockheed Martin
Corporation and SimIS, Inc. The U.S. government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained
herein are those of the authors and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of these organizations.

Heterogeneous Computing in T&E

32(1) N March 2011 85

